OCAREWEATHER

Performance Simulations for Veery, a Small Scatterometer for an Hourly OSVW Constellation

IOVWST 2024

Patrick Walton, Alex Laraway — Care Weather David Long — BYU / Care Weather

PERFORMANCE	TARGET
Speed Accuracy	<2 m/s
Direction Accuracy	<20°
Dynamic Range	3-27 m/s
Spatial Resolution	25 km
Worst Case Latency	<2 hrs
Swath	>1000 km
Global Refresh	1 hrs

Objective

Commercially-viable hourly refresh of global ocean surface vector winds (OSVW) with high performance.

Hourly refresh requires much lower cost.

Orders of magnitude lower cost

- Iteration and vertical integration (see poster)
- Eliminate bulky hardware
 - Active cooling systems \Rightarrow proprietary passive thermal management
 - \circ Slip rings \Rightarrow body-spun scanning
 - \circ Deployables \Rightarrow body mount array antenna
 - \circ Thrusters \Rightarrow aerodynamic flight, differential drag
- Stackability (pictured)
 - 5-10 satellites in a single rideshare slot.
- Aerodynamic at Low Orbit • Loss $(L \sim d^4) \Rightarrow \frac{1}{2} d = \frac{1}{16} L$
- Flat surface area to mass ratio

 8X body-mount solar panel for same mass

Compass Simulation Methodology

• Calculate measured backscatter across a 3–27 m/s range of winds speeds and compass directions for each 25 km cell.

Simulated Accuracy Across the Swath

Simulated Accuracy vs. True Wind Speed

Simulated Accuracy vs. True Wind Speed

Accuracy Summary

Refresh Simulation Methodology

- Simulate swaths over 24-hr period
- Calculate statistics for time between visits for each cell.
- For Veery, evenly space satellites in LTAN.

Hits in 24 hrs – 2 ASCATs

Hits in 24 hrs – 36 Veeries

Refresh vs. Latitude Summary

Iterative Development Approach

- Flight qualification of subset of the system is in progress.
- See poster for more details.

Acknowledgments

This material is based upon work supported by National Science Foundation Grant No. 2304609.

Patrick Walton patrick@careweather.com

OCAREWEATHER BYU

Compass Simulation Approach

For each WVC over swath, compute geometry, Kp coefficients, etc. for each measurement (1000's) For each wind speed 3:3:27 m/s For each wind direction "around the compass" 0:5:360 deg Compute "true" Sigmao from GMF for each measurement For each realization (25) of independent noise Pre-average in incidence and azimuth bins to ~100 measurements Retrieve wind using MLE Select closest ambiguity to true, compute wind error Compute wind error statistics for speed and direction

Plot statistics versus swath position, wind speed

Compass Simulation Methodology

- Compute instrument geometry, including signal processing
 - Assume uniform sigma_o over WVC
 - 25 & 50 km WVCs
 - Kpc computed from SNR and sigmao, communication noise independent
 - Rotating fan beam provides 1000's of low-SNR measurements for each WVC with wide azimuth, incidence angle variation leads to low Kpc
 - Kpr=o (calibration error)
 - No rain, fixed atmospheric attenuation
- CMOD5 for forward/reverse GMF
 - Kpm=0.17 (GMF modelling variance) with independent measurement (recognized to be optimistic)
- MLE retrieval including 1/log(Kpc) term
 - 1/log(Kpc) term does not make much difference
 - Well-validated retrieval code with 2-4 ambiguities
- Ideal ambiguity selection (ambiguity closest to true chosen)

Compass Simulation "Mustache Plots"

Far-swath Performance over speed, direction and swath

Mid-swath Performance over speed, direction and swath

Far-swath Performance over speed, direction and swath

Monte Carlo Compass Statistics RMS Error at true wind speed = 7 m/s

- New methods improve wind retrieval for significant rain
- Wind-only better than simultaneous wind/rain retrieval for zero rain rate
- Simultaneous retrieval poor at swath edges
- Simultaneous and rain-corrected wind estimates very similar

